Примеры геометрической модели на плоскости. Основные виды геометрических моделей

Среди всего разнообразия моделей, применяемых в науке и технике, самое широкое распространение получили математические модели. Под математическими моделями обычно понимаются различные математические конструкции, построенные на основе современной вычислительной техники, описывающие и воспроизводящие взаимосвязи между параметрами моделируемого объекта. Для установления связи между числом и формой существуют различные способы пространственно-числового кодирования. Простота и доступность решения практических задач зависит от удачно выбранной системы отсчета. Геометрические модели классифицируют на предметные (чертежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные модели. Графические построения могут служить для получения численных решений различных задач. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм – аналитические методы.

Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п. Графическая модель зависимости называется графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Например, диаграмма состояния (фазовая диаграмма), графически изображает соотношение между параметрами состояния термодинамически равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой.

Особенно интересным является использование геометрии для оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма.Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Приступая к изучению какого-либо конкретного явления, специалист, прежде всего, собирает факты, т.е. отмечает такие ситуации, которые поддаются экспериментальному наблюдению и регистрации с помощью органов чувств или специальных приборов. Экспериментальное наблюдение всегда носит проекционный характер, так как множеством фактов, неразличимых в данной ситуации (принадлежащих одному проектирующему образу) присваивается одно и то же название (проекция). Пространство, отнесенное к изучаемому явлению, называется операционным, а пространство, отнесенное к наблюдателю, – картинным. Размерность картинного пространства определяется возможностями и средствами наблюдения, т.е. вольно или невольно, сознательно и совершенно стихийно устанавливается экспериментатором, но всегда меньше размерности исходного пространства, которому принадлежат исследуемые объекты, обусловленные разнообразными связями, параметрами, причинами. Размерность исходного пространства очень часто остается не выявленной, т.к. существуют не выявленные параметры, которые влияют на исследуемый объект, но не известны исследователю или не могут быть учтены. Проекционный характер любого экспериментального наблюдения объясняется, прежде всего, невозможностью повторения событий во времени; это один из регулярно возникающих и неуправляемых параметров, независящих от воли экспериментатора. В некоторых случаях этот параметр оказывается несущественным, а в других случаях играет очень важную роль. Отсюда видно, какое большое и принципиальное значение имеют геометрические методы и аналогии при построении, оценке или проверке научных теорий. Действительно, каждая научная теория основывается на экспериментальных наблюдениях, а результаты этих наблюдений представляют собой – как сказано – проекцию изучаемого объекта. При этом реальный процесс может быть описан несколькими различными моделями. С точки зрения геометрии это соответствует выбору различного аппарата проектирования. Он различает объекты по одним признакам и не различает их по другим. Одной из наиболее важных и актуальных задач является выявление условий, при которых происходит сохранение или, наоборот, распадение детерминизма модели, полученной в результате эксперимента или исследования, так как практически всегда важно знать, насколько эффективна и пригодна данная гомоморфная модель. Решение поставленных задач геометрическими средствами оказалось уместным и естественным в связи с использованием указанных выше проекционных воззрений. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования. Совершенной модели соответствуют закономерности, устанавливающие однозначное или многозначное, но, во всяком случае, вполне определенное соответствие между некоторыми исходными и искомыми параметрами, описывающими изучаемое явление. В этом случае действует эффект схематизации, преднамеренное сокращение размерности картинного пространства, т.е. отказ от учета ряда существенных параметров, позволяющих экономить средства и избежать ошибок. Исследователь постоянно имеет дело с такими случаями, когда интуитивно незакономерные явления отличаются от закономерных явлений, где существует какая-то связь между параметрами, характеризующими исследуемый процесс, но пока не известен механизм действия этой закономерности, для чего в последствии ставится эксперимент. В геометрии этому факту соответствует различие между распавшейся моделью и совершенной моделью с неявно выраженным алгоритмом. Задачей исследователя в последнем случае является выявление алгоритма в проекции, элементов входа и элементов выхода. Закономерность, полученная в результате обработки и анализа некоторой выборки экспериментальных данных, может оказаться недостоверной из-за неверно сделанной выборки действующих факторов, подвергнутых исследованию, так как она оказывается лишь вырожденным вариантом более общей и более сложной закономерности. Отсюда возникает необходимость в повторных или натурных испытаниях. В геометрическом моделировании этому факту – получению неверного результата – соответствует распространение алгоритма для некоторого подпространства элементов входа, на все элементы входа (т.е. нестабильность алгоритма).

Простейшим реальным объектом, который удобно описывать и моделировать с помощью геометрических представлений, является совокупность всех наблюдаемых физических тел, вещей и предметов. Эта совокупность заполняет физическое пространство, которое можно рассматривать как исходный объект, подлежащий изучению, геометрическое пространство – как его математическую модель. Физические связи и отношения между реальными объектами заменяются позиционными и метрическими отношениями геометрических образов. Описание условий реальной задачи в геометрических терминах является очень ответственным и самым сложным этапом решения задачи, требующим сложной цепи умозаключений и высокого уровня абстракции, в результате которого реальное событие облекается в простую геометрическую конструкцию. Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

При решении многих задач начертательной геометрии возникает необходимость в преобразованиях изображений, полученных на плоскостях проекций. Коллинеарные преобразования на плоскости: гомология и аффинное соответствие – имеют существенное значение в теории начертательной геометрии. Так как любая точка на плоскости проекций является элементом модели точки пространства, уместно предположить, что любое преобразование на плоскости порождается преобразованием в пространстве и, наоборот, преобразование в пространстве вызывает преобразование на плоскости. Все преобразования, выполняемые в пространстве и на модели, проводятся с целью упрощения решения задач. Как правило, такие упрощения связаны с геометрическими образами частного положения и, следовательно, суть преобразований, в большинстве случаев, сводится к преобразованию образов общего положения в частное.

Построенная по методу двух изображений плоская модель трехмерного пространства вполне однозначно или, как говорят, изоморфно сопоставляет элементы трехмерного пространства с их моделью. Это позволяет решить на плоскостях практически любую задачу, которая может возникнуть в пространстве. Но иногда по некоторым практическим соображениям, бывает целесообразно дополнить такую модель третьим изображением объекта моделирования. Теоретической основой для получения дополнительной проекции служит геометрический алгоритм, предложенный немецким ученым Гауком.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи. Задачи, связанные с выявлением взаимного положения геометрических образов относительно друг друга, называются позиционными. В пространстве прямые линии и плоскости могут пересекаться и могут не иметь пересечения. Открытые позиционные задачи в исходном пространстве, когда кроме задания пересекающихся образов не требуется никаких построений, становятся закрытыми на плоской модели, так как алгоритмы их решения распадаются из-за невозможности выделения геометрических образов. В пространстве прямая линия и плоскость всегда имеют пересечение в собственной или несобственной точке (прямая параллельна плоскости). На модели плоскость задается гомологией. На эпюре Монжа плоскость задается родственным соответствием и для решения задачи необходимо реализовать алгоритм построения соответственных элементов в заданном преобразовании. Решение задачи на пересечение двух плоскостей сводится к определению линии, которая одинаково преобразуется в двух заданных родственных соответствиях. Позиционные задачи на пересечение геометрических образов, занимающих проецирующее положение, значительно упрощаются в связи вырожденностью их проекций и поэтому играют особую роль. Как известно, одна проекция проецирующего образа обладает собирательным свойством, все точки прямой линии вырождаются в одну точку, а все точки и линии плоскости вырождаются в одну прямую линию, поэтому позиционная задача на пересечение сводится к определению недостающей проекции искомой точки или линии. Учитывая простоту решения позиционных задач на пересечение геометрических образов, когда хотя бы один из них занимает проецирующее положение, можно решать позиционные задачи общего вида с помощью методов преобразования чертежа для преобразования одного из образов в проецирующее положение. Имеет место факт: различные пространственные алгоритмы на плоскости моделируются одним и те же алгоритмом. Это можно объяснить тем, что в пространстве существует алгоритмов на порядок больше, чем на плоскости. Для решения позиционных задач используются различные методы: метод сфер, метод секущих плоскостей, преобразования чертежа. Операция проецирования может рассматриваться как способ образования и задания поверхностей.

Существует большой круг задач, связанных с измерением длин отрезков, величин углов, площадей фигур и т. д. Как правило, эти характеристики выражаются числом (две точки определяют число, характеризующее расстояние между ними; две прямые определяют число, характеризующее величину образованного ими угла и т. д.), для определения которого используются различные эталоны или шкалы. Примером таких эталонов являются обычная линейка и транспортир. Для того чтобы определить длину отрезка, надо сравнить его с эталоном, например, линейкой. А как приложить линейку к прямой линии общего положения на чертеже? Масштаб линейки в проекциях будет искажаться, причем для каждого положения прямой будет свой масштаб искажения. Для решения метрических задач на чертеже необходимо задать опорные элементы (несобственную плоскость, абсолютную полярность, масштабный отрезок), используя которые можно построить любую шкалу. Для решения метрических задач на эпюре Монжа используют преобразования чертежа так, чтобы искомые образы не искажались хотя бы в одной проекции. Таким образом, под метрическими задачами будем понимать преобразования отрезков, углов и плоских фигур в положения, когда они изображаются в натуральную величину. При этом можно использовать различные способы. Существует общая схема решения основных метрических задач на измерение расстояния и углов. Наибольший интерес представляют конструктивные задачи, решениекоторых опирается на теорию решения позиционных и метрических задач. Под конструктивными задачами понимаются задачи, связанные с построением геометрических образов, отвечающих определенным теорем начертательной геометрии.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики. В процессе изучения теоретической механики и сопротивления материалов появляются качественно новые виды наглядности: схематичный вид конструкции, расчетная схема, эпюра. Эпюра – это разновидность графика, на котором показаны величина и знак различных внутренних силовых факторов, действующих в любой точке конструкции (продольных и поперечных сил, крутящих и изгибающих моментов, напряжений и т. д.). В курсе сопротивления материалов в процессе решения любой расчётной задачи требуется неоднократное перекодирование данных путём использования различных по своим функциям и уровням абстракции изображений. Схематичный вид, как первая абстракция от реальной конструкции, позволяет сформулировать задачу, выделить её условия и требования. Расчетная схема условно передаёт особенности конструкции, её геометрические характеристики и метрические соотношения, пространственное положение и направление действующих силовых факторов и реакций опор, точки характерных сечений. На её основе создаётся модель решения задачи, и она служит наглядной опорой в процессе реализации стратегии на разных этапах решения (при построении эпюры моментов, напряжений, углов закручивания и других факторов). В дальнейшем при изучении технических дисциплин идёт усложнение структуры используемых геометрических образов с широким использованием условно-графических изображений, знаковых моделей и их различных сочетаний. Таким образом, геометрические модели становятся интегрирующим звеном естественных и технических учебных дисциплин, а также методов профессиональной деятельности будущих специалистов. В основе становления профессиональной культуры инженера положена графическая культура, позволяющая разные виды деятельности объединить в рамках одной профессиональной общности. Уровень подготовки специалиста определяется тем, насколько развито и подвижно его пространст­венное мышление, так как, инвариантной функцией интеллектуальной деятельности инженера является оперирование образными графическими, схематическими и знаковыми моделями объектов.


Похожая информация.


Подсистемы машинной графики и геометрического моделирования (МГиГМ) занимают центральное место в машиностроительных САПР-К. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму деталей, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, момент инерции, цвета поверхности и т.п.).

В подсистемах МГиГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию в аппаратуре рабочей станции и при необходимости корректировку решения в интерактивном режиме. Две последние операции реализуются на базе аппаратных средств машинной графики . Когда говорят о математическом обеспечении МГиГМ, имеют в виду прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации. При этом часто именно математическое обеспечение подготовки к визуализации называют математическим обеспечением машинной графики.

Различают математическое обеспечение двумерного (2D) и трехмерного (3D) моделирования. Основные применения 2D-графики — подготовка чертежной документации в машиностроительных САПР , топологическое проектирование печатных плат и кристаллов БИС в САПР электронной промышленности. В развитых машиностроительных САПР используют как 2D, так и 3D моделирование для синтеза конструкций, представления траекторий рабочих органов станков при обработке заготовок, генерации сетки конечных элементов при анализе прочности и т.п.

В процессе 3D моделирования создаются геометрические модели , т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).

Каркасная модель представляет форму детали в виде конечного множества линий, лежащих на поверхностях детали. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях маршрутов проектирования неудобно, и поэтому каркасные модели в настоящее время используют редко.

Поверхностная модель отображает форму детали с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.

Особое место занимают модели деталей с поверхностями сложной формы, так называемыми скульптурными поверхностями . К таким деталям относятся корпуса многих транспортных средств (например, судов, автомобилей), детали, обтекаемые потоками жидкостей и газов (лопатки турбин, крылья самолетов), и др.

Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к детали пространству.

Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.

При решении большинства задач в области автоматизированного конструирования (К) и технологической подготовки производства (ТПП) надо иметь модель объекта проектирования.

Под моделью объекта понимают его некоторое абстрактное представление, удовлетворяющее условию адекватности этому объекту и позволяющее осуществлять его представление и обработку с помощью компьютера.

Т.о. модель – набор данных, отображающих свойства объекта и совокупность отношений между этими данными.

В модель объекта ПР в зависимости от характера ее исполнения может входить ряд разнообразных характеристик и параметров. Чаще всего модели объектов содержат данные о форме объекта, его размерах, допусках, применяемых материалах, механических, электрических, термодинамических и других характеристиках, способах обработки, стоимости, а также о микрогеометрии (шероховатость, отклонения формы, размеров).

Для обработки модели в графических системах САПР существенным является не весь объем информации об объекте, а та часть, которая определяет его геометрию, т.е. формы, размеры, пространственное размещение объектов.

Описание объекта с точки зрения его геометрии называется геометрической моделью объекта .

Но геометрическая модель может в себя включать еще и некоторую технологическую и вспомогательную информацию.

Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчетов различных характеристик объекта (например, по МКЭ), для подготовки программ для станков с ЧПУ.

В традиционном процессе конструирования обмен информацией осуществляется на основе эскизных и рабочих чертежей с использованием нормативно-справочной и технической документации. В САПР этот обмен реализуется на основе внутримашинного представления объекта.

Под геометрическим моделированием понимают весь многоступенчатый процесс – от вербального (словесного) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления объекта.

В системах геометрического моделирования могут обрабатываться 2-мерные и 3-хмерные объекты, которые в свою очередь могут быть аналитически описываемыми и неописываемыми. Аналитически неописываемые геометрические элементы, такие как кривые и поверхности произвольной формы, используются преимущественно при описании объектов в автомобиле-, самолето- и судостроении.


Основные виды ГМ

2-мерные модели , которые позволяют формировать и изменять чертежи, были 1-ми моделями, нашедшими применение. Такое моделирование часто применяется и до сих пор, т.к. оно намного дешевле (в отношении алгоритмов, использования) и вполне устраивает промышленные организации при решении разнообразных задач.

В большинстве 2-мерных систем геометрического моделирования описание объекта осуществляется в интерактивном режиме в соответствии с алгоритмами, аналогичными алгоритмам традиционного метода конструирования. Расширением таких систем является то, что контурам или плоским поверхностям ставится в соответствие постоянная или переменная глубина изображения. Системы, работающие по такому принципу, называется 2,5-мерными. Они позволяют получать на чертежах аксонометрические проекции объектов.

Но 2-мерное представление часто не удобно для достаточно сложных изделий. При традиционных способах конструирования (без САПР) пользуются чертежами, где изделие может быть представлено несколькими видами. Если изделие очень сложное, его можно представить в виде макета. 3-хмерная модель служит для того, чтобы создать виртуальное представление изделия во всех 3-х измерениях.

Различают 3 вида 3-хмерных моделей:

· каркасные (проволочные)

· поверхностные (полигональные)

· объемные (модели сплошных тел).

· Исторически 1-ми явились каркасные модели . В них хранятся только координаты вершин (x,y,z ) и соединяющие их ребра.

На рисунке видно, как куб может быть воспринят неоднозначно.


Т.к. известны только ребра и вершины, возможны различные интерпретации одной модели. Каркасная модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей, в которых аппроксимирующие поверхности являются плоскостями. На основе каркасной модели можно получать проекции. Но невозможно автоматически удалять невидимые линии и получать различные сечения.

· Поверхностные модели позволяют описывать достаточно сложные поверхности. Поэтому они часто соответствует нуждам промышленности (самолето-, судо-, автомобилестроение) при описании сложных форм и работе с ними.

При построении поверхностной модели предполагается, что объекты ограничены поверхностями, которые отделяют их от окружающей среды. Поверхность объекта тоже становится ограниченной контурами, но эти контуру являются результатом 2-х касающихся или пересекающихся поверхностей. Вершины объекта могут быть заданы пересечением поверхностей, множеством точек, удовлетворяющих какому-то геометрическому свойству, в соответствии с которым определяется контур.

Возможны различные виды задания поверхностей (плоскости, поверхности вращения, линейчатые поверхности). Для сложных поверхностей используются различные математические модели аппроксимации поверхностей (методы Кунса, Безье, Эрмита, В-сплайна). Они позволяют изменять характер поверхности с помощью параметров, смысл которых доступен пользователю, не имеющему специальной математической подготовки.


Аппроксимация поверхностей общего вида плоскими гранями дает преимущество: для обработки таких поверхностей используются простые математические методы. Недостаток: сохранение формы и размеров объекта зависит от числа граней, используемых для аппроксимаций. Чем > число граней, тем < отклонение от действительной формы объекта. Но с увеличением числа граней одновременно увеличивается и объем информации для внутримашинного представления. Вследствие этого увеличивается как время на работу с моделью объекта, так и объем памяти для хранения модели.

· Если для модели объекта существенно разграничение точек на внутренние и внешние, то говорят об объемных моделях . Для получения таких моделей сначала определяются поверхности, окружающие объект, а затем они собираются в объемы.

В настоящее время известны следующие способы построения объемных моделей:

· В граничных моделях объем определяется как совокупность ограничивающих его поверхностей.

Структура может быть усложнена внесением действий переноса, поворота, масштабирования.

Достоинства:

¾ гарантия генерации правильной модели,

¾ большие возможности моделирования форм,

¾ быстрый и эффективный доступ к геометрической информации (например, для прорисовки).

Недостатки :

¾ больший объем исходных данных, чем при CSG способе,

¾ модель логически < устойчива, чем при CSG, т.е. возможны противоречивые конструкции,

¾ сложности построения вариаций форм.

· В CSG-моделях объект определяется комбинацией элементарных объемов с использованием геометрических операций (объединение, пересечение, разность).

Под элементарным объемом понимается множество точек в пространстве.

Моделью такой геометрической структуры является древовидная структура. Узлы (нетерминальные вершины) – операции, а листья – элементарные объемы.

Достоинства:

¾ концептуальная простота,

¾ малый объем памяти,

¾ непротиворечивость конструкции,

¾ возможность усложнения модели,

¾ простота представления частей и сечений.

Недостатки:

¾ ограничение рамками булевых операций,

¾ вычислительноемкие алгоритмы,

¾ невозможность использовать параметрически описанных поверхностей,

¾ сложность при работе с функциями > чем 2-го порядка.

· Ячеечный метод. Ограниченный участок пространства, охватывающий весь моделируемый объект, считается разбитым на большое число дискретных кубических ячеек (обычно единичного размера).

Моделирующая система должна просто записать информацию о принадлежности каждого куба объекту.

Структура данных представляется 3-хмерной матрицей, в которой каждый элемент соответствует пространственной ячейке.

Достоинства:

¾ простота.

Недостатки:

¾ большой объем памяти.

Для преодоления этого недостатка используют принцип разбиения ячеек на подъячейки в особо сложных частях объекта и на границе.

Объемная модель объекта, полученная любым способом, является корректной, т.е. в данной модели нет противоречий между геометрическими элементами, например, отрезок не может состоять из одной точки.

Каркасное представление м.б. использовано не при моделировании, а при отражении моделей (объемных или поверхностных) как один из методов визуализации.

Для решения задач комплексной автоматизации машиностроительных производств необходимо построить информационные модели изделий. Машиностроительное изделие как материальный предмет должен быть описан в двух аспектах:

Как геометрический объект;

Как реальное физическое тело.

Геометрическая модель необходима для задания идеальной формы, которой должно было бы соответствовать изделие, а модель физического тела должна дать характеристику материала, из которого изготовляется изделие, и допустимые отклонения реальных изделий от идеальной формы.

Геометрические модели создаются с помощью программных средств геометрического моделирования, а модели физического тела с помощью средств создания и ведения баз данных.

Геометрическая модель, как разновидность модели математической, охватывает определенный класс абстрактных геометрических объектов и отношений между ними. Математическое отношение - это правило, связывающее абстрактные объекты. Они описываются с помощью математических операций, связывающих один (унарная операция), два (бинарная операция) или более объектов, называемых операндами, с другим объектом или множеством объектов (результатом операции).

Геометрические модели создаются, как правило, в правой прямоугольной системе координат. Эти же системы координат используются в качестве локальных при задании и параметризации геометрических объектов.

В табл.2.1 приведена классификация базовых геометрических объектов. По размерности параметрических моделей, необходимых для представления геометрических объектов, они делятся на нульмерные, одномерные, двумерные и трехмерные. Нульмерные и одномерные классы геометрических объектов могут моделироваться как в двух координатах(2D) на плоскости, так и в трех координатах(3D) в пространстве. Двумерные и трехмерные объекты могут моделироваться только в пространстве.

Язык СПРУТ для геометрического моделирования машиностроительных изделий и оформления графической и текстовой документации

Существует значительное количество систем компьютерного геометрического моделирования, наиболее известными из которых являются Auto- CAD, ANVILL, EUCLID, EMS и др. Из числа отечественных систем этого класса наиболее мощной является система СПРУТ, предназначенная для автоматизации конструирования и подготовки управляющих программ для станков с ЧПУ.

Нульмерные геометрические объекты

На плоскости

Точка на плоскости

Точка на линии

Точка, заданная одной из координат и лежащая на прямой

В пространстве

Точка в пространстве

Точка, заданная координатами в базовой системе

P3D i = Xx,Yy,Zz

Точка на линии

Точка, заданная как n-я точка пространственной кривой

P3D i = PNT,CC j,Nn

Точка на поверхности

Точка, заданная как точка пересечения трех плоскостей;

P3D i = PLs i1,PLs i2,PLs i3

Таблица 2.1 Геометрические объекты в среде спрут

Размер-ность объекта

Размерность пространства

Вид объекта

Оператор СПРУТ

На плоскости(2D)

Точки на плоскости

Pi = Xx, Yy; Pi = Mm, Aa

[подсистема SGR]

Точки на линии

Pi = Xx, Li; Pi = Ci, Aa

В пространстве(3D)

Точки в пространстве

P3D i = Xx,Yy, Zz

[подсистема GM3]

Точки на линии

P3D i = PNT,CC j,Nn

Точки на поверхности

P3D i = PLS i1,PLS i2,PLS i3

На плоскости(2D)

[подсистема SGR]

Окружности

Ki = Pj, -Lk, N2, R20, Cp, Pq

Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Кривые 2-го порядка

CONIC i = P i1, P i2, P i3, ds

В пространстве(3D) [подсистема GM3]

P3D i = NORMAL,CYL j,P3D k; P3D i = NORMAL,Cn j,P3D k; P3D i = NORMAL,HSP j,P3D k; P3D i = NORMAL,TOR j,P3D k

L3D i = P3D j,P3D k

CC i = SPLINE,P3D i1,...,P3D j,Mm

Параметрическая кривая на поверхности

CC n = PARALL, BASES=CCi, DRIVES=CCk, PROFILE=CCp, STEPs

Линии пересечения поверхностей

SLICE K i, SS j, Nk, PL l;

INTERS SS i, SS j, {L,} LISTCURV k

Проекция линии на поверхность

PROJEC Ki, CC j, PLS m

Проволочные модели

SHOW CYL i; SHOW HSP i; SHOW CN i; SHOW TOR i

Двух -мерные

В пространстве [подсистема GM3]

Плоскости

PL i = P3D j,L3D k

Цилиндры

CYL i = P3D j,P3D k,R

CN i = P3D j,R1,P3D k,R2;

CN i = P3D j,R1,P3D k,Angle

HSP i = P3D j,P3D k,R

TOR i = P3D j,R1,P3D k,R1,R2

Поверхности вращения

SS i = RADIAL, BASES = CC j, DRIVES = CC k, STEP s

Линейчатые поверхности

SS i = CONNEC, BASES = CC j, BASES = CC k, STEP s

Фасонные поверхности

SS i = PARALL, BASES = CC j, DRIVES = CC k, STEP s

Поверхности тензорного произведения

Трех-мерные

В пространстве [подсистема SGM]

Тело вращения

SOLID(dsn) = ROT, P3D(1), P3D(2), SET, P10, m(Tlr)

Тело сдвига

SOLID(dsn) = TRANS, P3D(1), P3D(2), SET, P10, M(Tlr)

Тело цилиндрическое

SOLID(dsn) = CYL(1), M(Tlr)

Тело коническое

SOLID(dsn) = CN(1), M(Tlr)

Тело сферическое

SOLID(dsn) = SPHERE(1), M(Tlr)

Тело торическое

SOLID(dsn) = TOR(1), M(Tlr)

Одномерные геометрические объекты

На плоскости

Векторы Вектор переноса MATRi = TRANS x, y

Линии Простые аналитические

Прямая (всего 10 способов задания)

Прямая, проходящая через две заданные точки Li = Pi, Pk

Окружность (всего 14 способов задания)

Окружность, заданная центром и радиусом Ci = Xx, Yy, Rr

Кривая второго порядка (всего 15 способов задания)

Кривая второго порядка, проходящая через три точки с заданным дискриминантом Conic i = P i1, P i2, P i3, ds

Составные Контуры - последовательность сегментов плоских геометрических элементов, начинающихся и заканчивающихся точками, лежащими на первом и последнем элементе соответственно K23 = P1, -L2, N2, R20, C7, P2 Кусочно-полиномиальные

Сплайн. Первым параметром в операторе является идентификатор "M", который указывает величину отклонения при аппроксимации отрезками сплайн-кривой. Далее следует начальное условие (прямая или окружность), затем перечисление точек в той последовательности, в которой они должны быть соединены. Заканчивается оператор определением условия на конце сплайн-кривой(прямая или окружность) Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Аппроксимация дугами Ki = Lt, Pj, Pk,..., Pn

В пространстве Векторы Вектор направления

Вектор единичной нормали в точке к полусфере P3D i = NORMAL,HSP j,P3D k Вектор единичной нормали в точке к цилиндру P3D i = NORMAL,CYL j,P3D k Вектор единичной нормали в точке к конусу P3D i = NORMAL, Cn j,P3D k Вектор единичной нормали в точке к тору P3D i = NORMAL,TOR j,P3D k Вектор переноса MATRi = TRANS x, y, z Линии

Независимые Прямая (всего 6 способов задания)

По двум точкам L3D i = P3D j,P3D k Сплайн-кривая CC i = SPLINE,P3D i1,.....,P3D j,mM На поверхности Параметрическая CC n=PARALL,BASES=CCi,DRIVES=CCk,PROFILE=CCp,STEPs Пересечение 2-х поверхностей Контур сечения поверхности плоскостью SLICE K i, SS j, Nk, PL l где N k - номер сечения Линия пересечения 2-х криволинейных поверхностей (результат список пространственных кривых) INTERS SS i,SS j,L,LISTCURV k ; где L - уровень точности; 3