Найти две разные общие точки плоскостей. Плоскость в пространстве – необходимые сведения

Вопрос 7.

Две плоскости в пространстве могут быть либо взаимно параллельными, и в частном случае совпадая друг с другом, либо пересекающимися. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей и будут рассмотрены ниже.

Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. При решении различных задач часто приходится через данную точку А проводить плоскость β , параллельную данной плоскости α .

На рис. 81 плоскость α задана двумя пересекающимися прямыми а и b. Искомая плоскость β определена прямыми а1 и b1 , соответственно параллельными a и b и проходящими через заданную точку A1.

Пересекающиеся плоскости. Линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Перед тем как рассмотреть построение линии пересечения двух плоскостей, разберем важную и вспомогательную задачу: найдем точку К пересечения прямой общего положения с проецирующей плоскостью.

Пусть например, даны прямая а и горизонтально проецирующая плоскость α (рис 82). Тогда горизонтальная проекция К1 искомой точки должна одновременно лежать на горизонтальной проекции α1 плоскости α и на горизонтальной проекции а1 прямой а, т.е. в точке пересечения а1 с α1 (рис 83) . Фронтальная проекция К2 точки К расположена на линии проекционной связи и на фронтальной проекции а2 прямой а.

А теперь разберем один из частных случаев пересекающихся плоскостей, когда одна из них – проецирующая.

На рис. 84 приведены плоскость общего положения, заданная треугольником АВС, и горизонтально проецирующая плоскость α. Найдем две общие точки для этих двух плоскостей. Очевидно, этими общими точками для плоскостей ∆АВС и α будут точки пересечения сторон АВ и ВС треугольника АВС с проецирующей плоскостью α . Построение таких точек D и E как на пространственном чертеже (рис 84) , так и на эпюре (рис 85) не вызывает затруднений после разобранного выше примера.

Соединяя одноименные проекции точек D и Е, получим проекции линии пересечения плоскости ∆ АВС и плоскости α.

Таким образом, горизонтальная проекция D1Е1 линии пересечения заданных плоскостей совпадает с горизонтальной проекцией проецирующей плоскость α – с ее горизонтальными следом α1.

Рассмотрим теперь общий случай. Пусть в пространстве заданы две плоскости общего положения α и β (рис 86). Для построения линии их пересечения необходимо, как отмечалось выше, найти две точки, общие обеим плоскостям.

Для определения этих точек заданные плоскости пересекают двумя вспомогательными плоскостями. В качестве таких плоскостей целесообразнее взять проецирующие плоскости и, в частности, плоскости уровня. На рис. 86 первая вспомогательная плоскость уровня γ каждую из данных плоскостей пересекает по горизонталям h и h1 , которые определяют точку 1, общую для плоскостей α и β. Эта точка определяется пересечением горизонталей h2 и h3, по которым вспомогательная плоскость δ пересекает каждую из данных плоскостей.

Пусть даны две плоскости

Первая плоскость имеет нормальный вектор (А 1 ;В 1 ;С 1), вторая плоскость (А 2 ;В 2 ;С 2).

Если плоскости параллельны, то векторы и коллинеарны, т.е. = l для некоторого числа l. Поэтому

─ условие параллельности плоскости.

Условие совпадения плоскостей:

,

так как в этом случае умножая второе уравнение на l = , получим первое уравнение.

Если условие параллельности не выполняется, то плоскости пересекаются. В частности, если плоскости перпендикулярны, то перпендикулярны и векторы , . Поэтому их скалярное произведение равно 0, т.е. = 0, или

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0.

Это необходимое и достаточное условие перпендикулярности плоскостей.

Угол между двумя плоскостями.

Угол между двумя плоскостями

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

это угол между их нормальными векторами и , поэтому

cosj = =
.

Прямая в пространстве.

Векторно-параметрическое уравнение прямой.

Определение. Направляющим вектором прямой называется любой вектор, лежащий на прямой или параллельный ей.

Составим уравнение прямой, проходящей через точку М 0 (х 0 ;у 0 ;z 0) и имеющей направляющий вектор = (а 1 ;а 2 ;а 3).

Отложим из точки М 0 вектор . Пусть М(х;у;z) ─ произвольная точка данной прямой, а ─ её радиус- вектор точки М 0 . Тогда , , поэтому . Это уравнение называется векторно-параметрическим уравнением прямой.

Параметрические уравнения прямой.

В векторно-параметрическом уравнении прямой перейдёт к координатным соотношениям (х;у;z) = (х 0 ;у 0 ;z 0) + (а 1 ;а 2 ;а 3)t. Отсюда получаем параметрические уравнения прямой

х = х 0 + а 1 t,

у = у 0 +а 2 t, (4)

Канонические уравнения прямой.

Из уравнений (4) выразим t:

t = , t = , t = ,

откуда получаем канонические уравнения прямой

= = (5)

Уравнение прямой, проходящей через две данные точки.

Пусть даны две точки М 1 (х 1 ;у 1 ;z 1) и М 2 (х 2 ;у 2 ;z 2). В качестве направляющего вектора прямой можно взять вектор = (х 2 – х 1 ;у 2 – у 1 ;z 2 – z 1). Поскольку прямая проходит через точка М 1 (х 1 ;у 1 ;z 1), то её канонические уравнения в соответствии с (5) запишутся в виде

(6)

Угол между двумя прямыми.

Рассмотрим две прямые с направляющими векторами = (а 1 ;а 2 ;а 3) и .

Угол между прямыми равен углу между их направляющими векторами, поэтому

cosj = =
(7)

Условие перпендикулярности прямых:

а 1 в 1 + а 2 в 2 + а 3 в 3 = 0.

Условие параллельности прямых:

l,

. (8)

Взаимное расположение прямых в пространстве.

Пусть даны две прямые
и
.

Очевидно, что прямые лежат в одной плоскости тогда и только тогда, когда векторы , и компланарны, т.е.

= 0 (9)

Если в (9) первые две строки пропорциональны, то прямые параллельны. Если все три строки пропорциональны, то прямые совпадают. Если условие (9) выполнено и первые две строки не пропорциональны, то прямые пересекаются.

Если же
¹ 0, то прямые являются скрещивающимися.

Задачи на прямую и плоскость в пространстве.

Прямая как пересечение двух плоскостей.

Пусть заданы две плоскости

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

Если плоскости не являются параллельными, то нарушается условие

.

Пусть, например ¹ .

Найдём уравнение прямой, по которой пересекаются плоскости.

В качестве направляющего вектора искомой прямой можно взять вектор

= × = =
.

Чтобы найти точку, принадлежащую искомой прямой, фиксируем некоторое значение

z = z 0 и решая систему


,

получаем значения х = х 0 , у = у 0 . Итак, искомая точка М(х 0 ;у 0 ;z 0).

Искомое уравнение

.

Взаимное расположение прямой и плоскости.

Пусть задана прямая х = х 0 + а 1 t, y = y 0 + a 2 t, z = z 0 + a 3 t

и плоскость

А 1 х + В 1 у +С 1 z + D 1 = 0.

Чтобы найти общие точки прямой и плоскости, необходимо решить систему их уравнений

А 1 (х 0 + а 1 t) + B 1 (y 0 + a 2 t) + C 1 (z 0 + a 3 t) + D 1 = 0,

(A 1 a 1 + B 1 a 2 + C 1 a 3)t + (A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1) = 0.

Если А 1 а 1 + В 1 а 2 + С 1 а 3 ¹ 0, то система имеет единственное решение

t = t 0 = -
.

В этом случае прямая и плоскость пересекаются в единственной точке М 1 (х 1 ;у 1 ;z 1), где

х 1 = х 0 + а 1 t 0 , y 1 = y 0 + a 2 t 0 , z 1 = z 0 + a 3 t 0 .

Если А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 ¹ 0, то прямая и плоскость не имеет общих точек, т.е. параллельны.

Если же А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 = 0, то прямая принадлежит плоскости.

Угол между прямой и плоскостью.

Две плоскости в пространстве могут быть либо взаимно параллель-ными, либо пересекающимися.

Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.


Выбор сторон треугольников произволен, так как только построением можно точно определить, какая действительно сторона и какого треугольника пересечет плоскость другого. Выбор вспомогательной плоскости также произволен, так как прямую общего положения, какими являются все стороны ∆ABC и ∆DEF , можно заключить в горизонтально проецирующую или во фронтально проецирующую плоскости.

1. Для построения точки M использована горизонтально проецирующая вспомогательная плоскость Ф (Ф AB треугольника ABC (AB Î Ф ).

2. Строим линию пересечения (на чертеже она задана точками 1 и 2) вспомогательной плоскости Ф (Ф 2) и плоскости ∆DEF .

3. Находим точку M пересечения прямой 1–2 с прямой AB .

Найдена одна точка M искомой линии пересечения.

4. Для построения точки N использована горизонтально проецирующая плоскость Р (Р 2), в которую заключена сторона EF треугольника DEF .

Построение аналогичны предыдущим.

5. Определение видимости элементов на плоскости П 2 выполнено с помощью фронтально конкурирующих точек 1=2 и 5=2.

Точка 5 (5ÎАВ ) расположена дальше от оси х чем точка 1 (1Î DF ), поэтому на плоскости П 2 часть треугольника ABC , расположенная в сторону точки 1, закрывает собой часть треугольника DEF , расположенную от линии пересечения в сторону точки 5.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.61).

Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В.

Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d.

Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой.

Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой

d//a, с//b Þ d1//a1,с1//b1; d2//a2 ,с2//b2; d3//a3,с3//b3.

Рисунок 61. Параллельные плоскости

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.62).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая a.

Требуется построить линию пересечения плоскостей.

Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью a - точка D, прямой (AС) -F. Отрезок определяет линию пересечения плоскостей. Так как a - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости aП1, таким образом остается только построить недостающие проекции на П2 и П3.

Рисунок 62. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью



Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(m,n) и b (ABC) (рис.63)

Рисунок 63. Пересечение плоскостей общего положения

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС). По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b - прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.64).



Рисунок 64. Взаимно перпендикулярные плоскости